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ABSTRACT 

 
In this paper we propose a novel super-resolution algorithm 
based on motion compensation and edge-directed spatial 
interpolation succeeded by fusion via pixel classification. 
Two high-resolution images are constructed, the first by 
means of motion compensation and the second by means of 
edge-directed interpolation. The AdaBoost classifier is then 
used to fuse these images into an high-resolution frame. 
Experimental results show that the proposed method 
surpasses well-known resolution enhancement methods 
while maintaining moderate computational complexity. 
 

Index Terms — super-resolution, dynamic super-
resolution, video resolution enhancement, pixel 
classification, edge-directed interpolation, AdaBoost. 

 
1. INTRODUCTION 

 
The problem of video resolution enhancement is currently 
of great importance due to the emergence of high definition 
(HD) displays. Since most video content is still lower 
resolution, special algorithms are needed to convert video to 
higher resolution. Algorithms for video resolution 
enhancement can be divided into two groups according to 
the type of information used. 

The first group is composed of algorithms that use the 
information only from the current video frame. Methods 
from this group (e.g. bilinear and bicubic interpolation) are 
widely used due to their low computational complexity. The 
second group consists of the so-called super-resolution (SR) 
algorithms. In this case the information from neighboring 
frames is also used, which leads to higher enlargement 
quality at the cost of higher computational complexity. 

Most contemporary SR algorithms are aimed at 
producing one high-resolution (HR) frame from a set of 
low-resolution (LR) frames. According to [1], we call them 
static SR algorithms. Various approaches have been taken 
recently in this field. Farsiu et al. [2] examined the LR 
image acquisition process in whole. They treated SR as an 
energy minimization problem and used robust regularization 
based on bilateral total variation to construct an HR frame. 
This method assumes affine motion in the sequence and 
considers the point spread function (PSF) of the camera to 
be known. Jiang et al. [3] improved the classical iterative 

backward projection algorithm [4] by making it more robust 
to optical flow estimation errors and by modeling the PSF 
via an elliptical weighted area filter. Freeman et al. [5] 
proposed an example-based image magnification method.  
large database storing the relationship between medium- 
and high-frequency patches was used to add plausible high-
frequency information to the enlarged image. This technique 
combined with the reconstruction constraint was used by 
Wang et al. [6] for SR. The method, however, exhibits 
enormous computational complexity. Li [7] investigated the 
special case of SR given a set of LR frames acquired at 
different focal lengths. Static SR methods, if directly 
applied to each video sequence frame, can not provide the 
temporal consistency of the enlarged video, which impedes 
their application for video resolution enhancement. 

The problem of producing HR video from LR video 
(dynamic SR) has also been addressed. Bishop et al. [8] 
extended the approach of [5] to video resolution 
enhancement; special priors were introduced to maintain the 
temporal consistency of the enlarged video. As any 
example-based method, it is quite dependent on the training 
set. Cheung et al. [9] applied epitomic analysis to video 
resolution enhancement. This technique, however, is 
suitable only for processing video containing scenes 
obtained at different focal lengths. Farsiu et al. [1] used the 
Kalman filter approximation to bind the frame being 
enlarged with the previously processed frame. A 
translational motion model was assumed. 

Modern SR algorithms, therefore, exhibit two main 
shortcomings: huge computational complexity and the 
necessity of a priori knowledge about camera characteristics 
and motion models. These shortcomings restrict the 
algorithms’ field of practical application mainly to cases 
where a sequence of LR images, acquired from spatially 
close points or with varying focal length, is to be processed. 
These algorithms are unsuitable for real-time or near-real-
time resolution enhancement of video streams. 

In this paper we propose a SR algorithm based on HR 
images fusion via pixel classification. The low 
computational complexity of the proposed method makes it 
suitable for fast video processing. Performance superiority 
over standard video upscaling methods is shown. The rest of 
the paper is organized as follows. In Section 2 our SR 
method is described. Experimental results are presented in 
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Section 3. Section 4 concludes the paper and points some 
directions of future research. 

 
2. PROPOSED SUPER-RESOLUTION ALGORITHM 

 
2.1. Algorithm Outline 
 
We consider the case of two-times magnification of spatial 
resolution; the other cases can be easily reduced to this one. 
It is also assumed that a pixel of LR frame is the mean of 
four corresponding pixels of this frame in high resolution. 

Our approach can be considered as an extension of that 
described in [1]. An unknown HR frame nH  (the upper 
index represents the frame number) is modeled by an output 
frame nH~ , which is constructed in three steps: 

1. Motion compensation. The current LR frame nL  is 
compensated from already constructed previous HR 
frame 1~ nH  to form an HR image M (Section 2.2). 

2. Spatial interpolation. nL  is upscaled using Edge-
Directed  Interpolation (EDI, Section 2.3) to form an 
HR image U . 

3. Fusion. The resultant frame nH~  is constructed via 
pixel-wise fusion of two HR images, M  and U . 
Pixel fusion coefficients are calculated via the 
AdaBoost [10] classifier (Section 2.4). 

The flowchart of the algorithm is presented in Fig. 1. 
 
2.2. Motion Compensation 
 
Block-based motion estimation (ME) with adaptive block 
size (16×16 and 8×8) is used, as it’s fast and capable of 
capturing complex motion in a video sequence. Motion 
vectors are found with quarter-pixel accuracy. The ME 
algorithm takes the variance of blocks luminance into 
account, producing smooth motion vector fields in uniform 
areas. ME is performed in luminance plane only.  

The architecture of SR ME differs from that of 
conventional ME, as the resolution of the current frame is 
two times smaller in each direction than the resolution of the 
reference frame. The same is true for the current block and 
its corresponding reference block. But under the assumption 
of dependency between LR pixel (pixel of LR frame) and 
corresponding   HR pixels   (pixels   of    HR   frame)    the 
adaptation of motion compensation to SR is straightforward. 
The following metric function  is used to compare an LR 
block  with an HR reference block pointed by a motion 
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Fig. 1. Flowchart of the proposed algorithm. 
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is the pixel of a reference block converted to low resolution 
using bilinear downsampling. Thus, the metric is an 
adaptation of the Sum of Absolute Differences (SAD) 
metric to the SR framework. 

After a motion vector is estimated for each block, the 
HR motion-compensated frame M  is built from the HR 
reference blocks. 
 
2.3. Spatial Edge-Directed Interpolation 
 
Lattices of LR and HR pixels are illustrated on Fig. 2; LR 
pixels are shown as circles, HR pixels – as squares. For LR 
pixel  the set of corresponding HR pixels is i

4
1)( kii

mlki ,,,

1T

kj . Consider an area  formed by LR pixels 
 with intensities A, B, C, D. At first, the luminance 

variance of  is calculated. If it is less than a certain 
threshold , the area is considered uniform, and bilinear 
interpolation is used for HR pixels belonging to . 
Otherwise, two possible cases are considered: an edge 
passes through , or  contains texture. To determine the 
right case the following values are compared: 

,, 21 DAdCBd  

2/,2/ DCBAhDBCAv . 
(3)

 If 212 Tdd , where 2T  is a threshold, the edge 
passes through LR pixels B and C (this case is depicted 
on Fig. 2). Pixels F and G are interpolated from B and 
C using linear interpolation. To obtain HR pixel H 
value, an imaginary line is drawn parallel to the edge 
through the pixel (dashed line in Fig. 2). Let H1 and H2 
be the luminance values at intersections of the line 
with LR lattice. H1 is linearly interpolated from C and 
D; H2 is interpolated from B and D. And finally, H is 
linearly interpolated from H1 and H2. Pixel E is 
processed in the same way. 
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Fig. 2. Correspondence between LR and HR pixels. 

 Else if 22  the edge passes through LR pixels 
A and D, and the interpolation is performed similarly. 

1 Tdd

 Else if 2Thv  the horizontal or vertical edge is 
present, and the aforementioned interpolation 
technique is applied. 

 Else there is no dominant edge direction, and  is 
considered belonging to the textured area. In this case 
Lanczos filter of radius 4 (lanc4) is used to obtain HR 
pixels’ values. 

 
2.4. Images Fusion via Classification 
 
After M and  HR images are built, a per-pixel fusion 
process is performed to construct an output HR frame. We 
introduce a probabilistic framework for the fusion process, 
modeling an unknown HR pixel value  (the lower index 

represents the pixel number) by a random variate  for 
which two possible cases are considered:  
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jM̂  and  are the pixels of jÛ M  and U , corrected 

according to the upscaling errors  and , which are 
defined as 
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It is assumed that, for each LR pixel , all four pixels from 
 are simultaneously taken either from 

i
iP M̂  or from . Û

Thus, the AdaBoost classifier can be employed to 
estimate the class  for each LR pixel , where ic i 1ic  if 

pixels from  are taken from iP M̂ , and  otherwise. 
The training set was constructed as follows: 20000 LR 
pixels were selected from the video sequences described in 
Section 3. For each LR pixel 

1ic

t  from the training set the 
class was determined in the least squares sense, i.e., the 

following sums of squared errors were calculated: 
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The class that corresponds to the lower sum was chosen. A 
Classification And Regression Tree (CART) of depth 5 was 
used as a weak learner.  

The feature vector X  consists of five features. The first 
two are the upscaling errors (5). The third is the luminance 
variance of neighboring LR pixels. The fourth is the sum of 
variances of the motion vector coordinates, calculated for 
neighboring blocks. The fifth feature is derived as follows: 
the difference between the sums of squared errors (6) is 
approximated by substituting  instead of  for each  

from 
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Three boosting iterations were performed to train a 
classifier. A small number of weak learners in the 
committee ensured the low computational complexity of the 
classifier. 

From our experiments, better results can be achieved, if 
 is modeled by the expectation of , i.e., by  n

jH n
jĤ

.,...,1,,ˆ1ˆˆ~ n
jiji

n
j

n
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Here, XcPp ii |1  is the class conditional probability, 
which, according to [10], can be written as 

)(2exp1/1 XFpi , (9)

where XF  is the classifier output. Such an approach can 
be somewhat argued by the fact that in cases where XF

Û

 is 
close to 0, it is difficult to determine the correct class. And 
in such cases (8) leads to the averaging of  and , 
which is slightly better than using one of them. Equation (9) 
can be presented in a more general form: 

jM̂ j

)(exp1/1 XFpi , (10)

where 0  is the “aggressivity” parameter.  
For the enlargement of chrominance planes the fusion 

process (8) is applied with the same  values as are used 
for the luminance plane. 

ip

 
3. EXPERIMENTAL RESULTS 

 
We used a test set of 9 HR video sequences in 1280×704 
resolution exhibiting different types of motion and texture. 
LR video was derived from them applying bilinear 
downsampling  by  a  factor of  1/2.  For comparison,  video 
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TABLE I 
Comparison of Y-PSNR (dB) for Various Methods 

Method 
Video Sequence No. 

1 2 3 4 5 6 7 8 9 
Bicubic 31.36 31.54 39.46 29.85 24.56 31.98 35.10 40.27 28.52 
Lanc4 32.03 32.58 40.36 30.81 25.33 32.69 36.43 41.27 29.48 

Proposed EDI 32.23 32.63 40.62 31.23 25.33 32.94 36.44 41.31 29.80 
Proposed SR with Lanc4 34.50 35.38 41.25 32.16 27.40 34.60 38.59 42.82 31.35 
Proposed SR with EDI 34.85 35.47 41.39 32.47 27.41 34.85 38.62 42.91 31.82 

 

 
(a) (b) (c) (d) 

Fig. 3. Visual quality comparison. (a) Ground truth; (b) lanc4 filter; (c) bicubic filter; (d) proposed SR with EDI. 

upscaling was performed by the bicubic and lanc4 filters, 
the proposed EDI, and the proposed SR which was tested 
with different spatial interpolators: lanc4 filter and EDI. The 
results were obtained using T . Next, the 
Y-PSNR measure was calculated for each of the compared 
methods  using ground truth HR video as a reference (pixels 
from the training set were not used in the calculation). The 
results of the comparison are presented in Table I. As can be 
seen, using EDI in the spatial interpolation step of SR is 
definitely better than using lanc4. In both cases the 
proposed SR maintains an acceptable processing speed of 2 
frames per second, achieved on a single-core Athlon64 
3600+ computer using a non-optimized C implementation. 

19,25,5 21 T

An example of the application of the proposed SR 
algorithm is presented in Fig. 3 together with the results of 
the lanc4 and bicubic filters. For clarity, the presented 
images are enlarged two times by a nearest neighbor filter. 
The proposed SR algorithm provides a sharper and more 
detailed picture in comparison with other methods. 

 
4. CONCLUSION 

 
In this paper, we present a novel super-resolution method 
intended for fast video resolution enhancement. Our method 
provided better quality than did frequently used single-
frame enlargement methods, as proven by both objective 
and subjective comparisons. The performance and the 
processing speed of our method can be further improved by 
using cascade classifiers and by employing more advanced 

edge-directed interpolation. Moreover, motion 
compensation can be applied to just highly textured areas, 
thus increasing the speed even further. All these directions 
form a subject of our future research. 
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